Code equivalence characterizes finite Frobenius rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Code Equivalence Characterizes Finite Frobenius Rings

In this paper we show that finite rings for which the code equivalence theorem of MacWilliams is valid for Hamming weight must necessarily be Frobenius. This result makes use of a strategy of Dinh and López-Permouth.

متن کامل

Polynomial Equivalence of Finite Rings

We prove that Zpn and Zp[t]/(t) are polynomially equivalent if and only if n ≤ 2 or p = 8. For the proof, employing Bernoulli numbers, we provide the polynomials which compute the carry-on part for the addition and multiplication in base p. As a corollary, we characterize finite rings of p elements up to polynomial equivalence.

متن کامل

The Equivalence Problem over Finite Rings

We investigate the computational complexity of deciding whether or not a given polynomial , presented as the sum of monomials, is identically 0 over a ring. It is proved that if the factor by the Jacobson-radical is not commutative, then the problem is coNP-complete.

متن کامل

A Coding-theoretic Characterization of Finite Frobenius Rings

In this paper we show that finite rings for which the extension theorem of MacWilliams is valid for Hamming weight must necessarily be Frobenius. This result makes use of a strategy of Dinh and López-Permouth.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-09164-2